
Lightweight Silent Data Corruption Detection
Based on Runtime Data Analysis for HPC Applications

Eduardo Berrocal∗ , Leonardo Bautista-Gomez† , Sheng Di† , Zhiling Lan∗ , and Franck Cappello†‡

∗Illinois Institute of Technology, Chicago, IL, USA
†Argonne National Laboratory, Argonne, IL, USA

‡University of Illinois at Urbana-Champaign, Champaign, IL, USA
eberroca@iit.edu, leobago@anl.gov, sdi1@anl.gov, lan@iit.edu, cappello@anl.gov

Abstract—Next-generation supercomputers are expected to
have more components and, at the same time, consume sev-
eral times less energy per operation. Hence, supercomputer
designers are pushing the limits of miniaturization and energy-
saving strategies. Consequently, the number of soft errors is
expected to increase dramatically in the coming years. While
mechanisms are in place to correct or at least detect soft
errors, a percentage of those errors pass unnoticed by the
hardware. Such silent errors are extremely damaging because
they can make applications silently produce wrong results.
In this work we propose a technique that leverages certain
properties of HPC applications in order to detect silent errors
at the application level. Our technique detects corruption based
solely on the behavior of the application datasets and is mostly
algorithm-agnostic. We propose multiple corruption detectors,
and we couple them to work together in a fashion transparent
to the user. We evaluate our strategy on well-known HPC
applications and kernels such as HACC and Nek5000. Our
results show that some detectors can detect up to 95% of
corruptions and other lightweight detectors can cover for the
majority of corruptions while incurring less than 5% overhead.

Index Terms—Fault Tolerance, Resilience, High-
Performance Computing, Data Mining, Silent Data Corruption,
Soft Errors, One-Step-Ahead Prediction, Time Series

I. INTRODUCTION

High-performance computing (HPC) is changing the way
scientists make discoveries. Science applications require ever-
larger machines to solve problems with higher accuracy.
While future systems promise to provide the power needed
to tackle those science problems, they are also raising
new challenges. For example, transistor size and energy
consumption of future systems must be significantly reduced,
steps that might dramatically impact the soft error rate (SER)
according to recent studies [1], [2].

Random memory access (RAM) devices have been inten-
sively protected against soft errors through error-correcting
codes (ECCs) because they have the largest share of the
susceptible surface on high-end computers. Recent studies,
however, indicate that ECCs alone cannot correct an im-
portant number of DRAM errors [3]. In addition, not all
parts of the system are ECC-protected: in particular, logic
units and registers inside the processing units are usually not

ECC-protected because of the space, time, and energy cost
that ECC requires in order to work at low level. Historically,
the SER of central processing units was minimized through
a technique called radiation hardening [4], which consists
of increasing the capacitance of circuit nodes in order to
increase the critical charge needed to change the logic level.
Unfortunately, this technique involves increasing either the
size or the energy consumption of the components, which
is prohibitively expensive at extreme scale. Thus, a non-
negligible ratio of soft errors could pass undetected by the
hardware, corrupting the numerical data of HPC applications.
This is called silent data corruption (SDC).

In this work, we leverage the fact that the datasets
produced by HPC applications (i.e., the applications’ state at
a particular point in time) have characteristics that reflect the
properties of the underlining physical phenomena that those
applications attempt to model. These characteristics can be
used effectively to design a general SDC detection scheme
with relatively low overhead. In particular, we propose to
leverage the spatial and temporal behavior of HPC datasets
to predict an interval of normal values for the evolution of
the datasets, such that any corruption will push the corrupted
data point outside the expected interval of normal values,
and it will, therefore, become an outlier.

Building a lightweight and efficient SDC detector for HPC
applications is a challenging endeavor. On the one hand, it
is unclear what are the most effective techniques to monitor
and predict HPC datasets’ evolution. On the other hand, an
HPC application’s data (as well as its characteristics) usually
change over time, enforcing any detector to dynamically
adapt. Moreover, advanced prediction techniques require
relatively large amounts of historic data and/or long training
periods, which are not feasible in practice.

The contributions of this work are summarized as follows.
• We design a battery of SDC detectors, relying on several

prediction methods, with different accuracy and cost
levels, that leverage the properties of HPC datasets.

• We theoretically analyze different prediction cases in
order to calculate optimal parameters for our detectors.

• We study the propagation of corruption on HPC appli-

cations, including the transfer to other processes.
• We perform a comprehensive evaluation using all our

detectors with a number of popular HPC applications,
and we show that our detectors can guarantee over 90%
of SDC coverage on real application runs.

• We discuss the performance and memory overheads
incurred by the proposed detectors and the trade-off
between detection cost and accuracy.

The rest of the paper is organized as follows. In Section
II we present related work. In Section III we present our
proposed detectors. In Section IV we introduce our analytical
model. In Section V we present our evaluation and results.
In Section VI we summarize our key findings.

II. RELATED WORK

The problem of data corruption for extreme-scale com-
puters has been the target of numerous studies. They can
be classified in three groups depending on their level of
generality, that is, how easily a technique can be applied to a
wide spectrum of HPC applications. They also have different
costs in time, space, and energy. An ideal SDC detection
technique should be as general as possible, while incurring
a minimum cost over the application.

A. Hardware-Level Detection

The most general method is to try to solve the problem
of data corruption at the hardware level. This method is
extremely general because applications do not require any
adaptation to benefit from such detectors. Considerable
literature exists on soft errors rates [5], [6], [2], [7] and
detection techniques at the hardware level [8], [9]. Implement
these techniques efficiently under the strict constraints of
extreme-scale computing (e.g., low power consumption)
is difficult, however. Moreover, market interest in driving
technologies in this direction is uncertain.

B. Process Replication

Process replication has been used for many years to
guarantee correctness in critical systems, and its application
to HPC systems has been studied. Fiala et al., for example,
proposed using double-redundant computation to detect SDC
by comparing the messages transmitted between the repli-
cated processes [10]. The authors also suggested using triple
redundancy to enable data correction through a voting scheme.
This approach is general in that applications need little
adaptation to benefit from double or triple redundancy. Their
customized MPI implementation (RedMPI) assumes that
corruption in application data manifests itself by producing
different MPI messages between replicas. In [11], the authors
take advantage of multithreading and multicore processors
to replicate threads of execution, so faults can be detected
by comparing outputs from replicated threads. Unfortunately,
double- and triple-redundant computation always imposes
large overheads, since the number of hardware resources

will be doubled or tripled. In addition, the cost of energy
consumption is heavily increased when using full replication,
not only because of the extra computation, but also because of
the extra communications. In contrast to process replication,
our techniques do not incur any network overhead, and their
memory footprints are always below 100%.

C. Algorithm-Based Fault Tolerance

A promising technique against data corruption is algorithm-
based fault tolerance (ABFT) [12]. This technique uses extra
checksums in linear algebra kernels in order to detect and
correct corruptions [13]. However, ABFT is not general,
since each algorithm needs to be adapted by hand, and only
some linear algebra kernels have been adapted, which is
only a subset of the vast spectrum of computational kernels.
Furthermore, even applications that employ only ABFT-
protected kernels could fail to detect SDCs if the corruption
lies outside the ABFT-protected regions. In comparison, our
proposed approach is general enough to protect any memory
region of any HPC application.

D. Approximate Computing

Another type of SDC detection is based on the idea
of approximate computing. In this detection method, a
computing kernel is paired with a cheaper and less accurate
kernel that will produce close enough results. Such results can
be compared with those generated by the main computational
kernel [14]. This detection mechanism shows promising
results, but again it is still not general enough, since
each application needs to be manually complemented with
the required approximate computing kernels. Furthermore,
complex applications also need to adapt multiple kernels to
offer good coverage.

III. ANOMALY DETECTION

In this work we propose to use data mining to detect
SDC during runtime in scientific applications. We believe
that a strategy based on data analytics is an interesting
path to explore for several reasons. First, such an approach
is completely independent of the underlying algorithm
and therefore dramatically more general than algorithm-
based techniques. Second, one can develop lightweight data-
monitoring techniques that impose a low overhead on the
application compared with that from extremely expensive
techniques such as double and triple redundancy. Third, data
monitoring and outlier detection can be offered by the runtime
in a fashion transparent to the user. Anomaly detection has
been used in multiple domains such as medical analysis.

Our main idea is to monitor the application datasets during
runtime in order to predict an interval of coherent values
for the next time step and then raise alerts when some data
points go outside this range (outliers). For instance, assume
a dataset that is evolving during execution and is being
monitored by our detector. The detector analyzes the dataset

Figure 1. Anomaly detection based on prediction.

at each time step and predicts an expected range of values
for the next time step. As shown in Figure 1, the detector
predicts that normal values should be inside the segment
[4.000, 4.050]. A data point with the value 4.0312495 is
inside that range. If that data point were corrupted in one
of the 16 most significant bits of the IEEE floating-point
representation, the value would automatically move outside
the expected range of normal values and would be detected
as an outlier. Now, let us imagine that our detector could
give a more accurate prediction, giving [4.03115, 4.03185]
as the interval of normal values. In this case, any corruption
in the 24 most significant bits would push the point outside
the new and narrower interval.

We evaluate the efficacy of our detectors using two well-
known metrics: precision (denoted ρ) and recall (denoted τ),
defined in Equations (1) and (2), respectively. Here TP, FP,
and FN refer to True Positives, False Positives, and False
Negatives, respectively. As shown above, the accuracy of the
prediction has a direct impact on the detection recall.

ρ =
TP

TP + FP
(1)

τ =
TP

TP + FN
(2)

Another important point is that not all the bits in the
IEEE floating-point representation need to be covered. For
instance, a corruption in the most significant bits is likely
to generate numerical instability, inducing the application to
crash. Such soft errors might be silent to the hardware but not
to the application. On the other hand, corruption in the least
significant bits of the mantissa might produce deviations that
are lower than the allowed error of the application and hence,
are negligible. On the second detector discussed above, if we
neglected the 4 most-significant bits (numerical instability)
and the 4 least-significant bits (negligible error), we could
say that the detector has a coverage of 20 bits out of 24
(83% coverage). In the following subsections we introduce
multiple detectors with different accuracy and cost levels.

A. One-Step Ahead Linear Predictors

In this section we introduce our anomaly detectors based
on point wise time evolution prediction. Here we try to
closely follow the time evolution of each data point in the
domain in order to predict the value at the next time step.
Our point wise SDC detection approach has two steps: a
step that involves the prediction of the next expected value
in the time series for each data point; and another step which
determines a buffer (i.e., normal value interval) surrounding
the predicted next-step value. Soft errors can be detected
by observing whether a particular value falls outside of this
computed buffer. Comparing with many prediction methods,
our approach needs to perform only one-step ahead prediction
using recent data values to achieve high accuracy. This is
because adjacent time steps show high data correlation. The
buffer size will play an important role for the expected
precision and recall. The optimal buffer size depends on the
relative location of the predicted value and the user-expected
accuracy. In general, all HPC applications have different
expected accuracy for its computation results. For example,
users may expect their accuracy to always be within 10−8.
Hence, for each computed data point, there will be a user-
expected (or tolerable accuracy) value interval. In Section IV
we present an analysis about the optimal buffer size for
different predicted values and user-expected accuracy.

b
u
ff
e
r

s
iz

e
 s

(S
ta

g
e
 I
I)

r

real

data

Value

V(t)

Predicted data

value X(t)

(Stage I)

e

u
s
e
r-

to
le

ra
b
le

v
a
lu

e
 i
n
te

rv
a
l

δ
Legend

Predicted data value

Real data value

δ Half of the buffer size

e Prediction error

r User-expected precision

Figure 2. Illustration of one-step prediction model (at time step t).

The key notation used to formulate the detection model
is presented in Figure 2. The buffer used to detect silent
errors is denoted by [X(t)− δ,X(t) + δ], where X(t) is the
predicted value at time step t. The buffer size is denoted by
s = 2δ. In general, the magnitude of the prediction error
will depend on the prediction method used, as shown in
Figure 2. In this figure, the real data value is presented as a
red circle, and the prediction error (denoted by e) is equal
to the difference between the predicted value X(t) and the
real data value (denoted by V (t)) computed at the current
time step. The user-expected (or tolerated) value interval is
denoted by [V (t)− r, V (t) + r], as shown in figure 2. Now,
we introduce a number of different predictors that are the
core of our point wise anomaly detectors. Every predictor
involves a trade-off between overhead and prediction error.

1) Linear Curve Fitting: Our first predictor, called linear
curve fitting (LCF), uses the two most recent previous time
steps to fit a linear curve, which is then projected to the next
time step in order to predict the next value in the time series.
Equation (3) shows how this prediction is calculated. ∆t−1
is the slope of the curve (velocity) at time t− 1.

X(t) = ∆t−1 + V (t− 1)

= (V (t− 1)− V (t− 2)) + V (t− 1)

= 2V (t− 1)− V (t− 2)

(3)

2) Acceleration-Based Predictor: The acceleration-based
predictor (ABP) uses the two and three most recent previous
time steps to extract the velocity (∆t−1) and acceleration
(∆2

t−1) of the data, respectively, and then combines them to
compute the prediction for the next value in the time series.

By definition we have

∆2
t−1 = ∆t−1 −∆t−2

∆t−1 = V (t− 1)− V (t− 2)

∆t−2 = V (t− 2)− V (t− 3).

Putting these together results in

X(t) = ∆2
t−1 + ∆t−1 + V (t− 1)

= 3V (t− 1)− 3V (t− 2) + V (t− 3).
(4)

3) Auto Regressive Model: The auto regressive model (AR)
assumes that every value in the time series depends linearly
on its previous values. Equation (5) describes AR, where c is
a constant, ϕi are the coefficients of the model, p the number
of coefficients, and εt the noise at time t. Normally, we can
assume εt ∼ N (0, σ2). The coefficients ϕi are computed by
using the first 10 time steps of the simulation (we assume
that no errors occur during this period) by least squares with
the Yule-Walker equations.

X(t) = c+

p∑
i=1

ϕiV (t− i) + εt (5)

Clearly, the value chosen for p is critical. A large value
of p may give a better prediction, but it will incur a high
memory footprint. We note that as opposed to LCF and ABP,
which keep only past values V , AR needs to keep both the
coefficients ϕi and the past values V in memory. In our
detector, we set p = 4.

4) Auto Regressive Moving Average Model: In the auto
regressive moving average (ARMA) model, we add the
polynomial from the moving average (MA) model to the AR
model. In ARMA, we need to specify how many coefficients
we have from both the AR model (p), and the MA model
(q). For our detector, we use p = 4 and q = 4. The errors
εt−i are computed by using the past prediction errors.

εt−i = V (t− i)−X(t− i)

The model is described as follows.

X(t) = c+

p∑
i=1

ϕiV (t− i) + εt +

q∑
i=1

θiεt−i (6)

B. Cluster-Based Anomaly Detector

In this section, we expand the idea of time-based prediction
to a spatial and spatiotemporal predictors in order to use
multiple detectors simultaneously. First we introduce an
optimization technique to limit the overhead induced by the
point wise prediction methods. In contrast to the point wise
detectors (see Section III-A), here we envision a scheme
based on predicting the evolution of a cluster of nearby
points. That is, all the data will be classified into a number
of clusters based on vicinity. The features of each cluster, such
as the probability density function (PDF), will be extracted,
monitored, and used for prediction. Such a design will be
inexpensive because we do not need to monitor each data
point independently but only treat the cluster features instead.
We use γ to denote the data in the cluster; each element in
γ is called a feature point. Any feature point outside of the
expected distribution will be considered an outlier.

1) Dataset Distribution: The first cluster-based detector
we propose is to estimate the normal value interval for the
target dataset γ that the next-step data will fall inside with
highest probability. Based on the PDF at time step (t− 1)
and the evolution of the PDFs at previous time steps (such
as t − 2), this detector gives a prediction of the possible
PDF for the detection time step (t). Any observed data point
located outside the boundaries of the predicted PDF will be
treated as an outlier. We call this detector a γ − detector.

2) Spatial Anomaly Detector: The second detector we
propose analyzes the space variations of the dataset γ. It
computes at each time step t− 1 a distribution for β (beta),
where β is computed as shown in Equation (7) for a 2D
domain.

β(i,j)(t) = γ(i,j)(t)− γ(g,h)(t)
where g, h ∈ {i− 1; i; i+ 1} (7)

This computation can take into account the neighbors in
one or more dimensions, as well as many neighbor points
(e.g., 5-point stencil) depending on the preferences of the
user. Then, the detector produces and stores the PDF of the
β for the last time step t− 1 and predicts a PDF for the next
detection time step t. As in the previous case, any feature
point indicating that β(i,j)(t) is outside the expected range
of normal values is treated as an outlier. We call this detector
a β − detector.

3) Temporal Anomaly Detector: The third type of detector
that we have developed is based on the temporal evolution of
a dataset. For each feature point, we compute the difference
ε (epsilon) as shown in Equation (8).

ε(i,j)(t) = γ(i,j)(t)− γ(i,j)(t− 1) (8)

Then, as with other detectors, we compute the distribution
of ε at time step t − 1, and check the observed values at
next time step t. Any ε(i,j)(t) that violates the predicted PDF
is treated as an outlier. Computing ε(t), however, requires
saving γ(t− 1) in memory, thus involving an extra memory
overhead. To avoid this overhead, we sacrifice the accuracy to
a certain extent by leveraging the index of PDF. Specifically,
we split the domain value range [min_value, max_value]
evenly into 256 bins. Instead of keeping x(i,j)(t − 1) for
each point in the domain, we keep only a 1-byte word that
indexes the value closest to γ(i,j)(t−1) from among the 256
bins. In this way, we reduce the memory footprint of such
detector from 4 or 8 bytes (for single or double precision,
respectively) per data point to only 1 byte. We call this
detector an ε− detector.

4) Spatiotemporal Anomaly Detector: The fourth detector
we propose in this work is a spatiotemporal detector that
computes the time evolution (denoted by ζ (zeta)) of the β,
as shown in Equation (9).

ζ(i,j)(t) = β(i,j)(t)− β(i,j)(t− 1) (9)

Computing the time gradient of the space gradient gives
us an idea of when a dataset increases or decreases its level
of turbulence. Similar to the temporal anomaly detector, one
must keep β values of the previous time step in order to
compute the time difference. Thus, we employ the same
indexing technique (loosing a little accuracy) to reduce the
overhead from 4 or 8 bytes per data point to only 1 byte.
We call this detector a ζ − detector.

IV. ANALYSIS OF THE DETECTION CASES AND
OPTIMIZATION OF BUFFER SIZE

In this section, we theoretically analyze different prediction
cases – in terms of prediction error and user expected
precision – in order to calculate an optimal buffer for our
predictors.

A. Analysis of Silent Error Detection Cases

A total of six cases are used for the relative locations
and/or values of the detection buffer and user-tolerable value
interval, as shown in Figure 3. In every case, the value space
is splitted into five different parts, each of which corresponds
to a particular detection result. In case 1 and case 6, the
estimated buffer stays completely outside the user-expected
interval; in case 2 and case 5, the buffer and the user-expected
interval overlap to a certain extent; in case 3, the buffer
completely falls inside the user-expected value interval, so
no FN detections occur; in case 4, the buffer contains the
user-expected interval, so again there are no FP detections.

B. Optimizing Buffer Sizes for One-Step-Ahead Prediction

In this subsection, we optimize the buffer sizes based on
different cases as shown in Figure 3. That is, our objective
is to optimize the value of δ, given some conditions required

(a) case 1 (b) case 2 (c) case 3 (d) case 4 (e) case 5 (f) case 6

TP

FN

TP

FP

TP

TP

FN

TN

FP

TP

TP

FP

TP

FP

TP

TP

FN

TN

FN

TP

TP

TP

FP

TN

FN

TP

FN

TP

FP

TP

Figure 3. Location analysis of buffer vs. user-tolerable interval

by users. We use δ∗{condition} to denote the optimal δ when
being subject to a particular condition (e.g., ρ=100%).

For simplicity, we discuss the δ∗ only when ρ=100% or
τ=100% is expected/required by users.

Theorem 1: When ρ=100% or τ=100%, the following
three propositions hold, provided that r and e are constants.

1© δ∗{ρ=100%} = r + e

2© δ∗{e≤r,τ=100%} = r − e
3© δ∗{e>r,τ=100%} does not exist.

Proof: There are two cases: e ≤ r or e > r.
As for e ≤ r (such as Figure 3(b)-(e)), the estimated buffer

must overlap the user-expected value interval. Five different
situations exist, as shown in Figure 4.

(a) case 1 (b) case 2 (c) case 3 (d) case 4 (e) case 5

FP

TP

TN

FP

TP

TP

TN

FP

TP

TP

TN

TP

FN

TN

TP

FN

TN

TP

FN

TP

TP

FN

FP

δ < r – e δ = r – e r–e<δ<r+e δ = r + e δ > r + e

Figure 4. The Five situations subject to e ≤ r

The predicted value X(t) is fixed because of the constants
e and r, while the buffer sizes increase through Figure 4
(a)-(e). Obviously, τ = 100% can occur only in case 1 and
case 2 because there must be no FN detections for both of
these two cases. That is, for meeting τ=100%, δ≤r−e must
hold. By comparing Figure 4(a) and (b), we can see that the
number of TP detections is the same while the FP detections
in case 2 is never greater than that of case 1. As a result, case
2 leads to the largest precision under the condition e ≤ r. In
other words, Equation (10) (proposition 2©) holds.

δ∗{e≤r,τ=100%} = r − e (10)

Similarly, we can derive Equation (11) from Figure 4 (d)
and (e), and Equation(12) using a similar analysis for e > r.

δ∗{e≤r,ρ=100%} = r + e (11)

δ∗{e>r,ρ=100%} = r + e (12)

Combining Equation (11) and (12), we get proposition 1©.
To illustrate proposition 3©, let us go back to Figure 3(a).

We see that, in order to guarantee a τ=100%, we would have
to let δ=0; otherwise, s(=2δ) 6=0, which means that there
would be detection cases where FN > 0. However, δ=0 (or
s = 0) conflicts with the checkpoint/restart model since it
would report all values in all time steps as outliers. This
would, in turn, produce a rollback in every time step, making
the progression of the application’s execution impossible.

In practice, the next-step real data value V (t) is unknown,
thus the next-step prediction error, e, is unknown, too.
However, we can estimate the confidence prediction error
interval (i.e., the maximum prediction error, denoted by emax)
as well as the expected prediction error (denoted by ē).

Theorem 2 further specifies the interval for the optimal
values of δ∗, with only prediction error conditions (i.e., e ≤
r), and its expected value.

Theorem 2: The following three formulas hold.

r − emax ≤ δ∗{e≤r} ≤ r + emax (13)

E(δ∗{ρ=100%}) = r + ē (14)

E(δ∗{e≤r,τ=100%}) = r − ē (15)

Proof:

(1) Proving Equation (13)
On the one hand, we can prove that for any particular

prediction error e (≤r), r− e ≤ δ∗ ≤ r+ e must hold. Such
a proposition can be proved by using Figure 3, which shows
all possible cases where the prediction error e is less than
or equal to the user-expected interval r. We can see that
precision and recall in case 2 can never be smaller than in
case 1. The reason is that FN = 0 holds in both cases but
FP is greater in case 1 than in case 2. Hence, δ∗e≤r ≥ r − e
holds. Similarly, we can prove that δ∗e≤r ≤ r + e based on
Figure 3 (d) and (e).

On the other hand, we have that e ≤ emax (∀e), therefore
we get inequality 16 with respect to any error e (≤r).

r − emax ≤ r − e ≤ δ∗{e≤r} ≤ r + e ≤ r + emax (16)

Consequently, Equation (13) holds.

(2) Proving Equations (14) and (15)
According to Theorem 2, we have that δ∗{ρ=100%} = r+ e

and δ∗{e≤r,τ=100%} = r − e. In this proof, we use x to
denote the random variable associated with the prediction
error (where x ≤ emax), and we use f(x) to denote the

probability density function. We can compute the expected
δ∗ (denoted by E(δ∗)) as follows

E(δ∗{ρ=100%}) =
∫ emax

0
f(x)(r + x)dx

= r +
∫ emax

0
f(x)xdx

= r + e
E(δ∗{e≤r,τ=100%}) =

∫ emax

0
f(x)(r − x)dx

= r −
∫ emax

0
f(x)xdx

= r − e

C. Optimizing Buffer Size for Cluster-Based Detector

To optimize the buffer size for cluster-based detector, we
must take into account the changing trend of the estimated
bounds, that is, the increase/decrease of the normal value
interval bounds generated based on the analysis of the
past data/features. The reason is that the group features of
the current step data during the execution may not always
comply with the features at last step in practice. Suppose
that the estimated intervals at last two steps (t−2 and t−1)
are computed as [lb(t−2),ub(t−2)] and [lb(t−1),ub(t−1)],
respectively, where lb and ub refer to lower bound and upper
bound, respectively. Then, the estimated bounds at the time
t will be set as follows

lb(t) = 2 · lb(t− 1)− lb(t− 2) (17)

ub(t) = 2 · ub(t− 1)− ub(t− 2) (18)

This approach is the one we follow for our cluster-based
detectors in order to avoid a large number of false alerts.

V. EVALUATION

In this section, we present a set of experiments performed
to test the efficacy of our SDC detector in production-
level HPC applications. All of our detectors, as well as our
bitflip injector, are implemented transparently inside the fault
tolerance interface (FTI) [15], originally used by applications
to perform efficient checkpoints of chosen datasets. The only
requirement for applications to use the SDC detectors inside
FTI is to add an extra library call in the main loop.

To cover a wide range of possible HPC datasets, we
use a computational fluid dynamics (CFD) mini app [16],
Nek5000 [17] (a CFD kernel), and HACC [18] (an N-
body cosmology application). The CFD mini app simulates
a turbulent flow in a 3D duct modeled as a large eddy
simulation (LES) using a two-stage time-differencing scheme
based on higher accuracy for compressible gas using Navier-
Stokes equations. The 3D duct is divided in N sections
along the length (x axis) of the duct, where N corresponds
to the number of MPI ranks in the execution. LES codes
are among the most challenging applications in this context
because of their chaotic and hard-to-predict behavior. They
also represents a large set of HPC applications, ranging
from weather prediction to aerospace engineering. Nek5000
is a CFD solver based on the spectral element method. It

0 50 100 150Length
0

20

40

60

80

W
id

th

0 100 200 300 400 500 600 700 800 900 1000

(a) Vorticity in turbulent fluid

0 50 100 150Length
0

20

40

60

80

W
id

th

Time step : 15125

10-7 10-6 10-5 10-4 10-3 10-2 10-1

(b) Error propagation of 24th bit corruption

15000 15100 15200 15300 15400 15500
Timestep

10-6

10-5

10-4

10-3

10-2

10-1

Sp
ee

d
u1

 e
rr

or

2
4
6

8
10
12

14
16
18

20
22
24

(c) Maximum deviation after corruption

Figure 5. Error propagation in turbulent flow simulation

is also being used for a large number of applications in
diverse fields such as reactor thermal-hydraulics and biofluids.
HACC (for Hybrid/Hardware Accelerated Cosmology Code)
is a cosmology code aimed at understanding the nature
of dark matter and dark energy in the universe. It uses
N-body methods and is optimized for a wide range of
systems (including those using accelerators). HACC divides
the computation of the gravitational force into two phases: a
long/medium range spectral particle-mesh (PM) component,
which is common to all architectures, and an architecture-
tunable particle-based short/close-range solver.

A. Corruption Propagation

We start by analyzing how corruption propagates in
classic HPC applications, such as the CFD code mentioned
above. CFD applications produce vorticity plots to show the
turbulence of the fluid. For instance, Figure 5(a) shows the
vorticity of the fluid on a 2D cut of the 3D duct. However,
the vorticity is computed from the velocity fields in the three
axes and is never stored in a variable. Therefore, an error
deviation observed in the vorticity plot is likely to be the
consequence of a corruption happening in one of the velocity
fields. In this run, we injected a bit-flip (grid point 40X40)
in the 24th bit position, the first bit of the exponent. This
corruption is barely visible to the naked eye if plotted on a
figure. Yet this corruption will generate large perturbations
that will propagate across the domain, reaching other MPI
ranks and corrupting the large majority of the domain.

To study the propagation of corruption after an SDC, we
performed the following experiment. First, we launched a
turbulent flow simulation starting from the initial conditions
and let it run for 15,000 time steps to let the gas reach a high
level of turbulence. Then, we restarted the execution from
time step 15,000 using FTI, and we recorded the datasets of
the execution at each time step for a corruption-free execution.
We confirmed that several corruption-free execution produce
identical results. Then, we repeated the same experiment but
this time injecting one bit-flip at bit position 2p for p in
[1,12]. For each experiment we injected the bit-flip in the
first twenty time steps and let it run for 500 iterations.

After all the corruption experiments were done, we
computed for each experiment and for each time step the
difference between the corrupted dataset and the corruption-
free dataset. Figure 5(b) plots this deviation a hundred time

steps after corrupting the 24th bit of the grid point 40X40.
We use a logarithmic color scale to show the magnitude of
the deviation in the different regions of the domain. As we
can observe, in only a hundred iterations the corruption has
already propagated across the entire domain, and it shows a
particularly high deviation in a region with a wave shape that
has as origin the corrupted grid point. Although the origin
of the corruption was in the grid point 40X40, the fluid
has moved in those hundred time steps, and the corruption
wave’s epicenter is about 20 grid points to the right, which
happens to be located in an MPI rank other than the one
where the corruption was originally injected.

We plotted similar figures for every time step of each
corruption experiment [19], but here, for brevity, we show
only one. We note that the high deviation wave bounces
in the walls of the duct and continues propagating in other
directions. To get an idea of how deviations behave for
different corruption levels, we plotted the maximum deviation
at each time step for all the corruption experiments. As we
can see in Figure 5(c), during the first ten time steps or
so, no corrupted data occurs. When the bit-flip is injected,
we observe a sudden jump with a magnitude exponentially
proportional to the bit-flip position, which is consistent with
the floating-point representation. In addition, we notice that
immediately after the corruption jump, the deviation starts
to decrease. This decrease is due to a smoothening effect
that takes place when the noncorrupted data interacts with
the corrupted data. However, the same influence can go
in the other direction. For instance, when the corruption
wave bounces in the wall of the duct, it interacts with
the other part of the wave that is just arriving to the wall,
generating a corruption amplification effect, which is what we
see happening after time step 15,150. Finally, the deviation
stabilizes around time step 15,400 and remains stable until
the end of the execution.

B. Prediction Errors for One-Step Ahead Linear Predictors

As we have seen in Section IV, the optimal value of the
buffer size (s∗ = 2δ∗) depends on the prediction error e. To
get an idea of the magnitude of this error, we run a set of
experiments using different predictors in traces generated
from the three mentioned HPC applications: one of the
position’s coordinates (x) of the particles in HACC, the
vertical flow for Nek5000, and velocity for Turbulence-CFD.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

C
D

F

Prediction Error

AR(4)
ARMA(4,4)

LCF
ABP

(a) HACC (particles’ position)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

C
D

F

Prediction Error

AR(4)
ARMA(4,4)

LCF
ABP

(b) Turbulence-CFD (velocity)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 4e-07

C
D

F

Prediction Error

AR(4)
ARMA(4,4)

LCF
ABP

(c) Nek5000 (vortex)

Figure 6. CDF of prediction errors for different predictors and HPC datasets.

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

ARMA
AR
LCF
ABP
Clu

(a) HACC (particles’ position)

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

ARMA
AR
LCF
ABP
Clu

(b) Turbulence-CFD (velocity)

102030405060
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

ARMA
AR
LCF
ABP
Clu

(c) Nek5000 (vortex)

Figure 7. Recall for bit-flips injected on applications’ traces.

These traces represent millions of prediction errors, which
allow us to build a cumulative distribution function (CDF)
of the size of e, as shown in Figure 6.

The most interesting result from these experiments is that
a relatively simple predictor such as ABP is able to achieve
smaller prediction errors than more complex linear models
uch as the well-known AR and ARMA models. In absolute
terms, for the HACC application, up to 90% of predictions
have an error lower or equal to 0.000014 under ABP, where
only 8% to 56% of predictions can reach such low errors
under other predictors. For Nek5000, the prediction errors
can be reduced to 8×10−9 for 90% of predictions. Moreover,
the AR and ARMA models require not only more memory
sizes per data point but also a parameter learning phase.

These experiments, however, do not help us in setting a
good value for δ. Note that the actual prediction error e at
a time step t is not known at runtime, making impossible
to compute the optimal value for δ. Instead, we use the
expectation of our desired optimal delta as shown in Equation
(14). Thus, in order to compute ē, we assume errors close
in time also experience a high degree of autocorrelation (as
does data itself). In this way, ē gets estimated by using the
prediction error in last time step, as shown as follows.

et = |V (t− 1)−X(t− 1)| (19)

C. Detection Results on Traces

In the first set of experiments, presented in Figure 7, we run
our detectors using traces extracted from our three selected
HPC datasets. We set the buffer size with the help of our
analytical model (see Section IV) to maximize precision in
order to avoid an excessive number of FP, which could render
our detectors prohibitively expensive, assuming a FP always

trigger extra actions (e.g., application-aware data consistency
checks). For instance, in the checkpoint/restart model, de-
tectors with poor precision could produce highly frequent
rollbacks, making the execution progression impossible.

We notice in these results that the cluster-based anomaly
detector Clu (see Section III-B), with less than 25% of
memory overhead per data point, can guarantee a large
coverage (over 50% of recall) against SDC. Moreover, we
note that for these HPC applications, the protected variables
represent less than 25% of the used memory, which translates
into less than 5% of memory footprint for the cluster-
based detectors. Therefore, these detectors can cover for
the majority of corruptions for a negligible overhead.

We also observe that the time-based point wise detectors
achieve the highest recall compared with the cluster-based
detector. This is not surprising given the amount of memory
overhead per data point of these predictors: 300% for LCF,
400% for ABP, 800% for AR, and 1600% for ARMA; as well
as the more expensive computation involved. In particular,
ABP achieves the best recall among all the other detectors,
which is consistent with the prediction error results presented
in Section V-B. For ABP we see an overall coverage (all bit
positions included) above 60% for the Turbulence-CFD and
above 80% for HACC or above 95% if we consider errors in
the first 5 bits of the mantissa to be negligible. In the case of
Nek5000, we can detect more than 75% of the corruptions
for bit-flips on bit positions ≥ 33. Although these point wise
detectors have a large memory footprint, they could be useful
for low-memory footprint applications or for applications
that are willing to pay the memory cost in order to have a
high confidence that their results are corruption-free.

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Real
Traces

(a) HACC (particles’ position)

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Vel
Pos+Vel

(b) HACC (velocity)

102030405060
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Real
Traces

(c) Nek5000 (vortex)

Figure 8. Comparing recall for bit-flips injected during real executions.

D. Detection Results at Runtime

In the second set of experiments, we test our detectors in
real application runs. The purpose of these experiments is
to study how runtime detection results compare to detection
results on traces. We choose the ABP detector because it has
the highest recall. We use HACC and Nek5000 as candidate
applications. We run HACC with 512 MPI ranks and around
16 million particles, protecting the position and velocity
variables. Nek5000 is run with 64 MPI ranks and a grid of
573,440 data points per rank. The variables protected are 7:
position(x,y,z), velocity(vx,vy,vz), and pressure.

In Figure 8 we inject bitflips at random particles on
particular bit positions on different datasets. We consider
any detection occurring five time steps after the corruption
(including the injection time step) as a true positive. In the
figure, vel refers to injection and detection on the particles’
velocity dataset, and pos+vel refers to injection on velocity
while detecting on position. In the latter case (Figure 8(b)), we
wanted to explore the idea of leveraging datasets’ correlation
for detection (i.e., making a corruption in one dataset visible
by the other). In the case of HACC, velocity is used to move
a particle to a new position.

Three conclusions can be extracted from these results:
First, if we consider the first five bits of the mantissa to be
negligible, our method can cover over 90% of all possible
corruptions for the position dataset in HACC (Figure 8(a)).
Similarly, if we consider the first 15 bits of the mantissa to
be negligible, our method can cover 75% of corruptions for
the vortex dataset in Nek5000 (Figure 8(c)).

Second, the performance of our detector depends heavily
on the underlying dataset (Figure 8(b)). We have observed
that position changes are smoother than velocity changes, thus
making the next values for velocity more difficult to predict.
In fact, we have observed that prediction errors for velocity
are an order of magnitude higher than those for position. The
good news is that our idea of leveraging datasets correlations
works. Apart from the savings in memory overhead, these
results indicate that we can achieve a similar recall monitoring
only position, than monitoring both.

Third, we see that our predictors have different results
depending on whether we work with traces or real application
runs. The reason for such disparities is that traces do not
represent the totality of the application’s data state, and are

used only to construct distributions to help us understand
different predictors and parameters. In any case, the results
are indeed similar enough to make us confident in our
experiments using traces.

We also performed experiments for other detectors (e.g.,
cluster based detectors) showing the significance of the trace
based results, but, for brevity, we do not plot those figures.

E. Performance Overheads

In this section we analyze the cost of our different detectors
in relation to their performance. By using the ABP detector
and assuming we protect all datasets in the HACC application,
the overheads imposed on the application are 84% extra
memory consumption, 13.75% extra computation time, and
0% extra network communication. These overheads are
calculated for a relatively small HACC run (512 MPI ranks).
However, the fact that our approach does not have any
network overhead makes it automatically scalable to larger
runs. We expect that the extra computation time will decrease
as more ranks and larger datasets are introduced.

A 84% memory overhead might be acceptable for applica-
tions that are not memory bound like Nek5000. However, it
might be too expensive for applications like HACC that are
memory bound (in particular, at extreme scale). In such
cases, we recommend using cluster-based detectors that,
with a memory and computation overhead under 5% (in
the case of HACC application), can still guarantee over 50%
of coverage, or over 60% if we assume the last 5 bits of
the mantissa to be negligible. For the CFD code, the ABP
detector improves the recall only by 11% in comparison
with cluster-based detectors, while imposing 16 times more
memory consumption per data point. Hence, cluster-based
detectors are more cost-effective.

VI. CONCLUSION AND FUTURE WORK

In this work we have presented a novel approach to tackle
the problem of SDC in HPC applications. We propose to
detect SDC by taking advantage of the characteristics of
HPC’ applications’ datasets. We have thereby designed a
large battery of SDC detectors with different costs and
accuracy levels, and developed an analytical model to
help us tune those detectors to achieve almost perfect
precision. We implemented and evaluated our detectors with
production-level scientific applications using both traces and

real experiments on supercomputers. Some new insights and
key findings are summarized below.
• Error Propagation Study: We show that corruption on

some bit positions might be negligible, as injection in
those bits does not deviate over a certain treshold.

• Prediction Accuracy of One-step Ahead Predictors: For
HACC, up to 90% of predictions have an error lower or
equal to 0.000014 under ABP, in comparison to only 8%
to 56% for other predictors. For Nek5000, the prediction
errors can be reduced to 8×10−9 for 90% of predictions.

• Detection with Injected Errors: ABP detectors lead to
the highest recall: up to 95% of SDC can be covered
with almost perfect precision in some cases.

• Overhead: Cluster-based detectors are the most cost-
effective detectors, covering the majority of corruptions
(over 50% of recall) for a negligible cost (less than 5%
of overhead in some cases).

Our work extends our previous results in that domain [20],
[21] and opens new research opportunities in the area of SDC
avoidance for HPC. We plan to explore other lightweight
detection methods from data analytics, the combination of
these methods and the introduction of data semantics aspects
in the analysis.

VII. ACKNOWLEDGMENTS

This work is supported by the Argonne National Labora-
tory, the U.S. Department of Energy, the Office of Science
and the Advanced Scientific Computing Research Program,
under Contract DE-AC02-06CH11357, and also in part by
the ANR RESCUE, and INRIA-Illinois Joint Laboratory for
Petascale Computing.

REFERENCES

[1] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error
vulnerabilities in extreme-scale scientific applications using
a binary instrumentation tool,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC’12). Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012, pp.
57:1–57:11.

[2] S. Borkar, “Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation,” IEEE Micro, vol. 25, pp. 10–16, Nov. 2005.

[3] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic
rays don’t strike twice: Understanding the nature of dram
errors and the implications for system design,” in Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’XVII). NY, USA: ACM, 2012, pp. 111–122.

[4] S. Krishnamohan and N. R. Mahapatra, “Analysis and design
of soft-error hardened latches,” in Proceedings of the 15th
ACM Great Lakes Symposium on VLSI (GLSVLSI’05). New
York, NY, USA: ACM, 2005, pp. 328–331.

[5] E. Normand, “Single event upset at ground level,” IEEE
Transactions on Nuclear Science, vol. 43, no. 6, pp. 2742–
2750, 1996.

[6] T. Semiconductor, “Soft errors in electronic memory - a white
paper,” 2004.

[7] Cataldo, “Mosys, iroc target ic error protection,”
2002. [Online]. Available: http://www.eetimes.com/story/
OEG20020206S0026

[8] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error
problem: An architectural perspective,” in 11th International
Symposium on High-Performance Computer Architecture
(HPCA’05), 2005, pp. 243–247.

[9] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc
for pc server main memory,” IBM Microelectronics Division,
pp. 1–23, 1997.

[10] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira,
and R. Brightwell, “Detection and correction of silent data
corruption for large-scale high-performance computing,” in
Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC’12).
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 78:1–78:12.

[11] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design
and evaluation of redundant multi-threading alternatives,” in
Proceedings of 29th Annual International Symposium on
Computer Architecture, 2002, pp. 99–110.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault toler-
ance for matrix operations,” IEEE Transactions on Computers,
vol. 100, no. 6, pp. 518–528, 1984.

[13] Z. Chen, “Online-abft: an online algorithm based fault tol-
erance scheme for soft error detection in iterative methods,”
in Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2013, pp.
167–176.

[14] A. R. Benson, S. Schmit, and R. Schreiber, “Silent error
detection in numerical time-stepping schemes,” International
Journal of High Performance Computing Applications, pp.
1–20, 2014.

[15] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: High performance
fault tolerance interface for hybrid systems,” in Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’11). New
York, NY, USA: ACM, 2011, pp. 32:1–32:32.

[16] X. Xu, “Large eddy simulation of compressible turbulent
pipe flow with heat transfer,” Doctorate Thesis, Iowa State
University, 2003.

[17] J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer, and
P. D. Hovland, “Speeding up nek5000 with autotuning and
specialization,” in Proceedings of the 24th ACM International
Conference on Supercomputing, ser. ICS ’10. New York,
NY, USA: ACM, 2010, pp. 253–262.

[18] S. Habib, V. A. Morozov, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, T. Peterka, J. A. Insley, D. Daniel, P. K. Fasel,
N. Frontiere, and Z. Lukic, “The universe at extreme scale:
Multi-petaflop sky simulation on the bg/q,” in Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’12), 2012,
pp. 1–11.

[19] Leonardo A. Bautista-Gomez, “Data Corruption Propagantion
on a CFD code,” http://leobago.com/projects/sdc/.

[20] L. A. Bautista-Gomez and F. Cappello, “Detecting silent data
corruption through data dynamic monitoring for scientific
applications.” in Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’14), 2014, pp. 381–382.

[21] S. Di, E. Berrocal, L. Bautista-Gomez, K. Heisey, R. Guptal,
and F. Cappello, “Toward effective detection of silent data
corruptions for hpc applications,” ser. SC ’14 - poster, 2014.

Government License Section (please add after the reference
section): The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or
on behalf of the Government.

